فصل 8 (نوا زاینده روی و درجه حرارتی)
منفعتی را مه کرده که سوال شرودیت را بطور استگنودر، ساخت لوله را بینی داده است. در عطر گرفتن که کار به چنین لوله به کمپیوترها می‌رسد، مواردی که لوله نامناسب فنی و روانشناسی دارد، را می‌توانیم بررسی کنیم.

برای درک کردن موضوعات فنی و روان‌شناسی، در رابطه با درکهای مربوط به پردازش کردن اطلاعاتی، افزایشی که نیرویی از لوله‌های داخلی و خارجی، از لوله‌ها می‌تواند داشته باشد.

- 너زشی ۲۵ یک متر
- سطع
- صفحه ۱-۱۵
خیال نشان دهنده کنار گرفتن شیء است.
\[E_0 = \frac{1}{(1+t)^2} \left[\frac{\Delta R_1}{R_1} - \frac{\Delta R_2}{R_2} + \frac{\Delta R_3}{R_3} - \frac{\Delta R_4}{R_4} \right] e_{i} \]

\[\Delta R_1 = \frac{\Delta R_y}{R_1} + \frac{\Delta R_t}{R_1} = \frac{\Delta R_3}{R_3} = \frac{\Delta x}{AE} \]

\[\epsilon = \frac{p}{AE} \]

\[\frac{\Delta R}{R} = \frac{\Delta y}{AE} \]

\[- \frac{\nu p}{AE} - \frac{3}{t} = \frac{p}{AE} \nu \beta - \xi \alpha \]
\(\varepsilon_t = -\nu \varepsilon_a \)

\(\Delta R_2 = -\frac{\Delta R_3}{R_2} + \frac{\Delta R_4}{R_2} = \frac{\Delta R_4}{R_4} \rightarrow M \rightarrow \)

\(\Delta R_g = -\nu S_g \frac{P}{A E} \)

\(\varepsilon_a \rightarrow \)
\[
\frac{\Delta R_2}{R_2} = \frac{\Delta R_t}{R_t} = -\gamma S_g \frac{P}{AE} + \frac{\Delta R_t}{R_t}
\]

\[
E_0 = \frac{\eta}{(1+\nu)^2} \left[\frac{S_g P}{AE} + \frac{\Delta R_t}{R_t} \right] \left[\frac{S_g P}{AE} - \frac{\Delta R_t}{R_t} \right] + \frac{S_g P}{AE} + \frac{\Delta R_t}{R_t} = \frac{S_g P}{AE} + \frac{\Delta R_t}{R_t}
\]

\[
E_0 = \frac{\eta}{(1+\nu)^2} \left[2 \frac{S_g P}{AE} + 2 \nu S_g \frac{P}{AE} \right] E_i
\]
\[E_0 = \frac{1}{4} \sqrt{S_g \frac{P}{AE}} (1 + v) E_i \]

\[P = \frac{2AE}{(1+v)S_g} \frac{E_0}{E_i} \]

\[\sigma_{x0} = 9.6 \delta \frac{S_G}{S_g} \begin{cases} \alpha & \text{if } S_G \leq S_g \\ 2.02 & \text{if } S_G > S_g \end{cases} \]

\[\lambda - \frac{\text{MPa}}{\text{bars}} \]

0.3
A - سطح مقطع محرک تکی

E - شرایط اولیه

E_0 - شرایط اولیه

$P = 6A = E3A$

$0 - 4T_{on}$
\[P = \frac{E A \Delta R}{R} \left(\frac{0.3}{5.3} \right) \times \left(\frac{120}{2.1} \right) \]

\[40000 = 30 \times 10^5 A \]

\[\text{Area} = 12 \text{ cm}^2 \]
\[P \]

\[\text{سیمکن - } \]

\[\frac{E_i (i + 1)}{2A} \]

\[S = \frac{E_0}{2A} \]

\[P = S E_0 \]

\[\frac{E_0}{P} = \frac{E_0}{2A} \]
\[S = \frac{E_i S_y(1+y)}{2AE} \]

\[P = 0.46 E_0 \]

\[S = \frac{S_y(1+y)}{2AE} E_i \]
\[E_0 = \frac{1}{(1 + \eta)^2} \left[\frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2} - \frac{\Delta R_3}{R_3} + \frac{\Delta R_4}{R_4} \right] \varepsilon \]
۳ این صفحه را مطالعه کنید / فرمول‌های را بیابید.
\[
\frac{\Delta R_2}{R_2} = \frac{\Delta R_4}{R_4} = S_9^{-1} (-3) = S_9 \left(\frac{-6P_X}{E_b h^2} \right) + \frac{\Delta R_6}{R_6},
\]

\[
E_0 = \frac{r}{(1+r)^2} \left[\frac{\Delta R_1}{R_1} - \frac{\Delta R_2}{R_2} + \frac{\Delta R_3}{R_3} - \frac{\Delta R_4}{R_4} \right] E_i.
\]

\[
E_0 = \frac{1}{4} \left[\frac{6S_9 P_X}{E_b h^2} + \frac{\Delta R_6}{R_6} - \left(\frac{6S_9 P_X}{E_b h^2} + \frac{\Delta R_6}{R_6} \right) \right],
\]

\[
6S_9 P_X \left(\frac{\Delta R_6}{E_b h^2} + \frac{\Delta R_6}{R_6} - \left(\frac{6S_9 P_X}{E_b h^2} + \frac{\Delta R_6}{R_6} \right) \right) E_i.
\]
\[E_0 = \frac{1}{4 \mu} \left[\sum_{k=1}^{6} S_k \frac{P_X}{E_i h^2} \right] E_i \]

\[P = \frac{E_b h^2}{6 S_g x} E_0 \]

\[S = \frac{E_0}{P} = \frac{E_0}{\frac{E_b h^2}{6 S_g x} E_0} = \frac{6 S_g x}{E_b h^2} \]
\[S = \frac{6S_g \times E_i}{E_b h^2} \]
مورد آینده 5G در کشور مژده‌دار نیست که ما به آن کمک نماییم.
\[P = 0.56 \frac{Ew}{L} \frac{t}{R^3} \frac{E_0}{S} \]

\[P_{SG} = \text{算} \]

\[S = \frac{S_L R^3}{1.79 Ew t^3} \]
شیار شبکهی نیروگیر

درستی یافتن نقطه مثلثی

استفاده از درک گیری دقیق نیست

۶ میزان فرکنش: حبابی نیست
پیش‌سازی درجه کاهش جودیت نزدیک است. لیبرال کالیفرنیا

سیاست‌های سازمان‌های دولتی و غیردولتی مبتنی بر زیرساخت‌های

یک‌طرفهٔ همگام، که باعث افزایش سطح غیرقانونی و زیست‌محیطی می‌شود، دراز از

تاریخ. رست (۴) \(T = p \) تا انصراف.